Wednesday 16 May 2012

Energy system

Energy System
Since energy is released when ATP is broken down, energy is required to rebuild or resynthesize ATP. The building blocks of ATP synthesis are the by-products of its breakdown; adenosine diphosphate and inorganic phosphate . The energy for ATP resynthesis comes from three different series of chemical reactions that take place within the body. Two of the three depend upon the food we eat, whereas the other depends upon a chemical compound called phosphocreatine. The energy released from any of these three series of reactions is coupled with the energy needs of the reaction that resynthesizes ATP. The separate reactions are functionally linked together in such a way that the energy released by the one is always used by the other.
There are 3 methods to resynthesize ATP:


             



  • ATP-PC system  - This system is used only for very short durations of up to 10 seconds. The ATP-PC system neither uses oxygen nor produces lactic acid if oxygen is unavailable and is thus said to be alactic anaerobic. This is the primary system behind very short, powerful movements like a golf swing, a 100 m sprint or powerlifting.
  • Anaerobic system  - Predominates in supplying energy for exercises lasting less than 2 minutes. Also known as the Glycolytic System. An example of an activity of the intensity and duration that this system works under would be a 400 m sprint.
  • Aerobic system - This is the long duration energy system. By 5 minutes of exercise the O2 system is clearly the dominant system. In a 1 km run, this system is already providing approximately half the energy; in a marathonrun it provides 98% or more.
When energy is needed, ATP is broken down using an enzyme (known as ATPase) into ADP (Adenosine Diphosphate). This process breaks the high energy Phosphate (P) bond and so provides energy for use by the body. Here is the equation you may see in text books:
ATP = ADP + P +Energy
The human body is also capable of resynthesising ATP to allow it to continue producing energy. To do this it must use energy to reverse the equation shown above. This is known as an endothermic reaction as it requires energy. The breakdown of ATP is called exothermic as it produces energy. The process of breaking down and resynthesising ATP is efficient at producing energy as less energy is required to resynthesis the ATP than is made to break it down. Here is the Resynthesis equation:
Energy + ADP +P = ATP

Monday 30 April 2012

Today my class were set a fitness test for our blood pressure. my blood pressure dropped a few times because i done the excercise because i had a little rest before my pulse got checked.
I never done the other test so i will use ofther class mates reults.
Caleb's Results:
Caleb's results were different to others because the before and after results were not close but they wasn't too far apart either here were the results below:
Before:108
After:186

Alot of peoples heart rates increased rapidly but on the other hand, peoples heart rates increased slowly. For example Khan's heart rate was:
Before:102
After:128
 so there wasnt a big difference between before Khan doing the excercise's and after the excercise. Also george's  heart rate increased slowly because there wasnt much difference here is the results
Before:108
After:128
Cardivascular
Everyone's heart increases by pumping
The respiratory system is the anatomical system of an organism that introduces respiratory gases to the interior and performs gas exchange. In humans and other mammals, the anatomical features of the respiratory system include airways, lungs, and the respiratory muscles. Molecules of oxygen and carbon dioxide are passively exchanged, by diffusion, between the gaseous external environment and the blood. This exchange process occurs in the alveolar region of the lungs. Other animals, such as insects, have respiratory systems with very simple anatomical features, and in amphibians even the skin plays a vital role in gas exchange Plants also have respiratory systems but the directionality of gas exchange can be opposite to that in animals. The respiratory system in plants also includes anatomical features such as holes on the undersides of leaves known as stomata.

Parts of the lower respiratory tract

  • Trachea: Also known as the windpipe this is the tube which carries air from the throat into the lungs. It ranges from 20-25mm in diameter and 10-16cm in length. The inner membrane of the trachea is covered in tiny hairs called cilia, which catch particles of dust which we can then remove through coughing. The trachea is surrounded by 15-20 C-shaped rings of cartilage at the front and side which help protect the trachea and keep it open. They are not complete circles due to the position of the oesophagus immediately behind the trachea and the need for the trachea to partially collapse to allow the expansion of the oesophagus when swallowing large pieces of food.

  • Bronchi: The trachea divides into two tubes called bronchi, one entering the left and one entering the right lung. The left bronchi is narrower, longer and more horizontal than the right. Irregular rings of cartilage surround the bronchi, whose walls also consist of smooth muscle. Once inside the lung the bronchi split several ways, forming tertiary bronchi.

  • Bronchioles: Tertiary bronchi continue to divide and become bronchioles, very narrow tubes, less than 1 millimeter in diameter. There is no cartilage within the bronchioles and they lead to alveolar sacs.

  • Alveoli: Individual hollow cavities contained within alveolar sacs (or ducts). Alveoli have very thin walls which permit the exchange of gases Oxygen and Carbon Dioxide. They are surrounded by a network of capillaries, into which the inspired gases pass. There are approximately 3 million alveoli within an average adult lung.

  • Diaphragm: The diaphragm is a broad band of muscle which sits underneath the lungs, attaching to the lower ribs, sternum and lumbar spine and forming the base of the thoracic cavity.